Flytting Gjennomsnitt Prosess Autokorrelasjon


2 1 Moving Average Models MA modeller. Tidsseriemodeller kjent som ARIMA-modeller kan omfatte autoregressive termer og eller bevegelige gjennomsnittlige termer. I uke 1 lærte vi en autoregressiv term i en tidsseriemodell for variabelen xt er en forsinket verdi på xt For eksempel , et lag 1 autoregressivt uttrykk er x t-1 multiplisert med en koeffisient Denne leksjonen definerer glidende gjennomsnittlige termer. En glidende gjennomsnittlig term i en tidsseriemodell er en fortid feil multiplikert med en koeffisient. La oss oversette N 0, sigma 2w, betydning at wt er identisk, uavhengig distribuert, hver med en normalfordeling med gjennomsnittlig 0 og samme varians. Den 1 st ordningsgjøre gjennomsnittlig modell, betegnet med MA 1 er. xt mu wt theta1w. Den 2. ordre flytte gjennomsnittlig modell, betegnet av MA 2 er. xt mu wt theta1w theta2.Den q ordreberegning av gjennomsnittlig modell, betegnet med MA q er. xt mu wt theta1w theta2w prikker thetaq. Note Mange lærebøker og programvare definerer modellen med negative tegn før betingelsene. Dette endrer ikke de generelle teoretiske egenskapene til modellen, selv om den ikke flipper de algebraiske tegnene på estimerte koeffisientverdier og ubetingede vilkår i formler for ACFer og avvik Du må sjekke programvaren din for å verifisere om negative eller positive tegn har blitt brukt for å skrive riktig estimert modell R bruker positive tegn i sin underliggende modell, slik vi gjør her. Theoretiske egenskaper av en tidsrekke med en MA 1-modell. Merk at den eneste ikke-nullverdien i teoretisk ACF er for lag 1 Alle andre autokorrelasjoner er 0 Således er en prøve-ACF med en signifikant autokorrelasjon bare ved lag 1 en indikator på en mulig MA 1-modell. For interesserte studenter, Bevis på disse egenskapene er et vedlegg til denne utleveringen. Eksempel 1 Anta at en MA 1-modell er xt 10 wt 7 w t-1 hvor overskuddet N 0,1 Altså koeffisienten 1 0 7 Th e teoretisk ACF er gitt av. Et plott av denne ACF følger. Plottet som nettopp er vist er den teoretiske ACF for en MA 1 med 1 0 7 I praksis fikk en prøve t vanligvis et slikt klart mønster. Ved hjelp av R simulerte vi n 100 Eksempelverdier ved hjelp av modellen xt 10 wt 7 w t-1 hvor w t. iid N 0,1 For denne simuleringen følger en tidsserier av prøvedataene. Vi kan ikke fortelle mye fra denne plottet. Prøven ACF for den simulerte data følger Vi ser en spike ved lag 1 etterfulgt av generelt ikke signifikante verdier for lags fortid 1 Merk at prøven ACF ikke samsvarer med det teoretiske mønsteret til den underliggende MA 1, som er at alle autokorrelasjoner for lags forbi 1 vil være 0 A forskjellig prøve ville ha en litt annen prøve-ACF som vist nedenfor, men vil trolig ha de samme brede funksjonene. Deoretiske egenskaper av en tidsrekkefølge med en MA 2-modell. For MA 2-modellen er teoretiske egenskaper følgende. Merk at den eneste ikke-null Verdiene i teoretisk ACF er for lags 1 og 2 Autocorrelat ioner for høyere lags er 0 Så, en prøve-ACF med signifikante autokorrelasjoner ved lags 1 og 2, men ikke-signifikante autokorrelasjoner for høyere lags indikerer en mulig MA 2-modell. Nid koeffisientene er 1 0 5 og 2 0 3 Fordi dette er en MA 2, vil den teoretiske ACF ha null nullverdier bare ved lags 1 og 2.Values ​​av de to ikke-autokorrelasjonene er. En plot av den teoretiske ACF følger. Som nesten alltid er tilfellet, vil prøvedata vunnet t oppføre seg ganske så perfekt som teori Vi simulerte n 150 utvalgsverdier for modellen xt 10 wt 5 w t-1 3 w t-2 hvor w t. iid N 0,1 Tidsseriens plott av dataene følger Som med tidsseriens plott for MA1-prøvedataene, kan du ikke fortelle mye av det. Prøven ACF for de simulerte dataene følger Mønsteret er typisk for situasjoner der en MA 2-modell kan være nyttig. Det er to statistisk signifikante pigger på lags 1 og 2 etterfulgt av ikke - - sviktige verdier for andre lag. Merk at på grunn av prøvetakingsfeil ikke samsvarte ACF det teoretiske mønsteret nøyaktig. ACF for General MA q Models. A egenskapen til MA q - modeller generelt er at det er ikke-null autokorrelasjoner for de første q lags og autocorrelations 0 for alle lags q. Non-uniqueness av forbindelse mellom verdier på 1 og rho1 i MA 1-modell. I MA 1-modellen, for en verdi på 1, gir den gjensidige 1 1 samme verdi. For eksempel, bruk 0 5 for 1 og bruk deretter 1 0 5 2 for 1 Du får rho1 0 4 i begge tilfeller. For å tilfredsstille en teoretisk begrensning som kalles invertibilitet begrenser vi MA 1-modeller til å ha verdier med absolutt verdi mindre enn 1 I eksemplet som er gitt, vil 1 0 5 være en tillatelig parameterverdi, mens 1 1 0 5 2 ikke vil. Invertibility av MA modeller. En MA-modell sies å være invertibel hvis den er algebraisk tilsvarer en konvergerende uendelig rekkefølge AR-modell. Ved konvertering mener vi at AR-koeffisientene reduseres til 0 når vi beveger oss tilbake i tiden. Invertibility er en begrensning programmert inn i tidsserier programvare som brukes til å estimere coeff ICE-modeller med MA-vilkår Det er ikke noe vi ser etter i dataanalysen. Ytterligere informasjon om inverterbarhetsbegrensningen for MA 1-modeller er gitt i vedlegget. Avansert teoretisk merknad For en MA q-modell med en spesifisert ACF, er det bare en inverterbar modell Den nødvendige betingelsen for inverterbarhet er at koeffisientene har verdier slik at ligningen 1- 1 y - qyq 0 har løsninger for y som faller utenfor enhetens sirkel. R Kode for eksemplene. I eksempel 1 plottet vi teoretisk ACF av modellen xt 10 wt 7w t-1 og deretter simulert n 150 verdier fra denne modellen og plottet prøve tidsseriene og prøven ACF for de simulerte data R-kommandoene som ble brukt til å plotte den teoretiske ACF var. acfma1 ARMAacf ma c 0 7, 10 lags av ACF for MA 1 med theta1 0 7 lags 0 10 skaper en variabel som heter lags som varierer fra 0 til 10 plot lags, acfma1, xlim c 1,10, ylab r, type h, hoved ACF for MA 1 med theta1 0 7 abline h 0 legger en horisontal akse til plottet. Th e første kommandoen bestemmer ACFen og lagrer den i en gjenstand som heter acfma1 vårt valg av navn. Plot-kommandoen 3. kommando-plottene lags versus ACF-verdiene for lags 1 til 10 ylab-parameteren merker y-aksen og hovedparameteren setter en tittel på plottet. For å se de numeriske verdiene til ACF, bruk bare kommandoen acfma1. Simuleringen og plottene ble gjort med følgende kommandoer. liste ma c 0 7 Simulerer n 150 verdier fra MA 1 x xc 10 legger til 10 for å lage gjennomsnitt 10 Simuleringsstandarder betyr 0 plot x, type b, hoved Simulert MA 1 data acf x, xlim c 1,10, hoved ACF for simulert prøve-data. I eksempel 2 skisserte vi den teoretiske ACF av modellen xt 10 wt 5 w t-1 3 w t-2 og simulerte deretter n 150 verdier fra denne modellen og plottet prøve tidsserien og prøven ACF for den simulerte data R-kommandoene som ble brukt var. acfma2 ARMAacf ma c 0 5,0 3, acfma2 lags 0 10 plot lags, acfma2, xlim c 1,10, ylab r, type h, hoved ACF for MA 2 med theta1 0 5, theta2 0 3 abline h 0 liste ma c 0 5, 0 3 x xc 10 plot x, type b, hoved Simulert MA 2-serie acf x, xlim c 1,10, hoved ACF for simulert MA 2 Data. Appendix Bevis på egenskaper til MA 1.For interesserte studenter, her er det bevis på teoretiske egenskaper til MA 1-modellen. Varianttekst xt tekst mu wt theta1 w 0 tekst wt tekst theta1w sigma 2w theta 21 sigma 2w 1 theta 21 sigma 2When h 1 er det forrige uttrykket 1 w 2 For noen h 2 , forrige uttrykk 0 Årsaken er at ved definisjon av uavhengighet av Wt E wkwj 0 for noen kj Videre, fordi wt har betyde 0, E wjwj E wj 2 w 2.For en tidsserie. Bruk dette resultatet for å få ACF gitt ovenfor. En inverterbar MA-modell er en som kan skrives som en uendelig rekkefølge AR-modell som konvergerer slik at AR-koeffisientene konvergerer til 0 mens vi beveger oss uendelig tilbake i tid. Vi skal demonstrere inverterbarhet for MA 1-modellen. substituttforhold 2 for w t-1 i ligning 1. 3 zt wt theta1 z - theta1w wt theta1z - theta 2w. At tiden t-2 ligning 2 blir. Vi erstatter deretter forhold 4 for w t-2 i ligning 3. zt wt theta1 z - theta 21w wt theta1z - theta 21 z - theta1w wt theta1z - theta1 2z theta 31.If vi skulle fortsette uendelig, ville vi få den uendelige rekkefølgen AR - modellen. Zt wt theta1 z - theta 21z theta 31z - theta 41z prikker. Merk at hvis 1 1, vil koeffisientene som multipliserer lagene av z, øke uendelig i størrelse når vi beveger seg tilbake i tid. For å forhindre dette, trenger vi 1 1 Dette er betingelsen for en inverterbar MA 1 modell. Infinite Order MA modell. I uke 3 ser vi at en AR 1-modell kan konverteres til en uendelig rekkefølge MA-modell. xt - mu wt phi1w phi 21w prikker phi k1 w prikker sum phi j1w. Denne summeringen av tidligere hvite støybetingelser er kjent som en årsakssammenstilling av en AR 1 Med andre ord er xt en spesiell type MA med et uendelig antall termer går tilbake i tid Dette kalles en uendelig ordre MA eller MA En endelig ordre MA er en uendelig orden AR og en hvilken som helst endelig ordre AR er en uendelig ordre MA. Recall i uke 1, bemerket vi at et krav til en stasjonær AR 1 er at 1 1 La oss beregne Var xt ved hjelp av kausalrepresentasjonen. Dette siste trinnet bruker et grunnleggende faktum om geometriske serier som krever phi1 1 ellers ser serien ut. Dette eksempelet viser hvordan å introdusere autokorrelasjon i en hvit støyprosess ved å filtrere Når vi presenterer autokorrelasjon inn i et tilfeldig signal, manipulerer vi frekvensinnholdet. Et bevegelig gjennomsnittsfilter demper signalets høyfrekvente komponenter, effektivt utjevning. Opprett impulsresponsen for et 3-punkts glidende gjennomsnittfilter. Filter en N 0,1 hvit nei ise-sekvens med filteret Sett tilfeldig talgeneratoren til standardinnstillingene for reproduserbare resultater. Oppnå den forhåndsinnstilte prøveautokorrelasjonen ut til 20 lag. Plott prøveautokorrelasjonen sammen med teoretisk autokorrelasjon. Prøveautokorrelasjonen fanger den generelle formen for den teoretiske autokorrelasjonen, jevn selv om de to sekvensene ikke er enige i detalj. I dette tilfellet er det klart at filteret kun har innført betydelig autokorrelasjon bare over lags -2,2. Den absolutte verdien av sekvensen faller raskt til null utenfor dette området. For å se at frekvensinnholdet har blitt påvirket, plott Welch estimater av effektspektral tettheter av den opprinnelige og filtrerte signaler. Den hvite støyen har blitt farget av det bevegelige gjennomsnittlige filter. Eksterne Websites. Ellis, Dan Om Colored Noise. MATLAB Command. You klikket en lenke som tilsvarer denne MATLAB-kommandoen. Slett kommandoen ved å skrive den inn i MATLAB-kommandofeltet. Nettlesere støtter ikke MATLAB-kommandoer. Var dette emnet nyttig. Velg ditt land. Velg ditt land for å få oversatt innhold der det er tilgjengelig, og se lokale arrangementer og tilbud. Basert på din posisjon, anbefaler vi at du velger. Du kan også velge et sted fra følgende liste. A RIMA står for Autoregressive Integrerte Moving Gjennomsnittlige modeller Univariate single vector ARIMA er en prognostiseringsteknikk som projiserer fremtidens verdier av en serie basert helt på egen treghet. Hovedapplikasjonen er innenfor kortsiktige prognoser som krever minst 40 historiske datapunkter. Det fungerer best når din data viser et stabilt eller konsistent mønster over tid med et minimum av utelukker Noen ganger kalles Box-Jenkins etter de opprinnelige forfatterne, er ARIMA vanligvis overlegen mot eksponensiell utjevningsteknikker når dataene er rimelig lange og korrelasjonen mellom tidligere observasjoner er stabil Hvis dataene er kort eller svært flyktig, kan noen utjevningsmetode virke bedre Hvis du ikke har minst 38 data s uansett, bør du vurdere en annen metode enn ARIMA. Det første trinnet i å bruke ARIMA-metodikken er å sjekke for stasjonar. Stasjonar innebærer at serien forblir på et relativt konstant nivå over tid Hvis en trend eksisterer, som i de fleste økonomiske eller forretningsmessige applikasjoner, så dataene dine er IKKE stasjonære Dataene skal også vise en konstant variasjon i svingningene over tid. Dette er lett å se med en serie som er tungt sesongbasert og vokser i raskere takt. I et slikt tilfelle vil oppturer og nedturer i sesongmessigheten bli mer dramatisk over tid Uten disse stasjonære forholdene blir oppfylt, kan mange av beregningene knyttet til prosessen ikke beregnes. Hvis en grafisk oversikt over dataene indikerer ikke-stationaritet, bør du forskjellere serien. Differensiering er en utmerket måte å transformere en ikke-stationær serie til stasjonær en Dette gjøres ved å subtrahere observasjonen i den nåværende perioden fra den forrige Hvis denne transformasjonen er ferdig bare onc e til en serie, sier du at dataene først er differensiert. Denne prosessen eliminerer i hovedsak trenden hvis serien din vokser med en relativt konstant hastighet. Hvis den vokser i økende grad, kan du bruke samme fremgangsmåte og forskjell dataene igjen Dine data vil da bli annerledes forskjellig. Autokorrelasjoner er numeriske verdier som angir hvordan en dataserie er relatert til seg selv over tid Nærmere bestemt måler det hvor sterkt dataværdier ved et spesifisert antall perioder fra hverandre er korrelert til hverandre over tid Antallet perioder fra hverandre kalles vanligvis lag For For eksempel måler en autokorrelasjon ved lag 1 hvordan verdier 1 periode fra hverandre er korrelert til hverandre gjennom serien. En autokorrelasjon ved lag 2 måler hvordan dataene to perioder fra hverandre er korrelert gjennom serien. Autokorrelasjoner kan variere fra 1 til -1 En verdi nær 1 indikerer en høy positiv korrelasjon, mens en verdi nær -1 innebærer en høy negativ korrelasjon. Disse tiltakene blir oftest evaluert gjennom grafiske tomter kalt korrelagrammer. Et korrelagram plotter autokorrelasjonsverdiene for en gitt serie på forskjellige lag. Dette kalles for autokorrelasjonsfunksjon og er svært viktig i ARIMA-metoden. ARIMA-metodikken forsøker å beskrive bevegelsene i en stasjonære tidsserier som en funksjon av det som kalles autoregressive og bevegelige gjennomsnittsparametre. Disse kalles AR-parametere autoregessive og MA-parametere som beveger gjennomsnitt. En AR-modell med bare 1 parameter kan skrives som. som X t tidsserier under undersøkelse. A 1 den autoregressive parameteren for rekkefølge 1.X t-1 tidsserien forsinket 1 periode. E t feilperioden for modellen. Dette betyr bare at en gitt verdi X t kan forklares med en funksjon av sin tidligere verdi, X t - 1, pluss noe uforklarlig tilfeldig feil, E t Hvis den estimerte verdien av A 1 var 30, ville dagens verdi av serien være relatert til 30 av verdien 1 periode siden Selvfølgelig kunne serien være relatert til mer enn bare en siste verdi For eksempel. X t A 1 X t-1 A 2 X t-2 E t. Dette indikerer at dagens verdi av serien er en kombinasjon av de to umiddelbart foregående verdiene, X t-1 og X t - 2, pluss noen tilfeldig feil E t Vår modell er nå en autoregressiv modell av ordre 2.Moving Aver aldersmodeller. En annen type Box-Jenkins-modell kalles en bevegelig gjennomsnittsmodell. Selv om disse modellene ser veldig ut som AR-modellen, er konseptet bak dem ganske forskjellige. Flytte gjennomsnittlige parametere relaterer seg til hva som skjer i periode t bare til tilfeldige feilene som forekom i tidligere tidsperioder, dvs. E t-1, E t-2, osv. i stedet for til X t-1, X t-2, Xt-3 som i de autoregressive tilnærmingene. En flytende gjennomsnittsmodell med en MA-term kan skrives som følger. Betegnelsen B 1 kalles en MA i rekkefølge 1 Det negative tegnet foran parameteren brukes kun for konvensjon og skrives vanligvis ut automatisk ved de fleste dataprogrammer. Ovennevnte modell sier bare at en gitt verdi av X t er direkte relatert til den tilfeldige feilen i den foregående perioden, E t-1, og til dagens feilperiode, E t Som i tilfelle av autoregressive modeller kan de bevegelige gjennomsnittlige modellene utvides til høyere ordningsstrukturer som dekker forskjellige kombinasjoner og beveger gjennomsnittlig lengde. ARIMA metodikk als o lar modeller bygges som inneholder både autoregressive og bevegelige gjennomsnittsparametre sammen Disse modellene blir ofte referert til som blandede modeller Selv om dette gir et mer komplisert prognoseverktøy, kan strukturen faktisk simulere serien bedre og produsere en mer nøyaktig prognose. Rene modeller innebærer at strukturen kun består av AR - eller MA-parametere - ikke begge. Modeller utviklet av denne tilnærmingen kalles vanligvis ARIMA-modeller fordi de bruker en kombinasjon av autoregressiv AR, integrasjon I - refererer til omvendt prosess av differensiering for å produsere prognosen, og beveger gjennomsnittlig MA-operasjoner En ARIMA-modell er vanligvis angitt som ARIMA p, d, q Dette representerer rekkefølgen på de autoregressive komponentene p, antall differensoperatører d og den høyeste rekkefølgen av den bevegelige gjennomsnittlige termen For eksempel ARIMA 2, 1,1 betyr at du har en andre ordre autoregressiv modell med en første ordre som beveger gjennomsnittlig komponent hvis serie er forskjellig påc e for å indusere stasjonar. Picking the Right Specification. Hovedproblemet i klassiske Box-Jenkins prøver å bestemme hvilken ARIMA-spesifikasjon som skal brukes - hvor mange AR - og MA-parametere som skal inkluderes. Dette er hvor mye Box-Jenkings 1976 var viet til Identifikasjonsprosessen Det avhenger av grafisk og numerisk vurdering av prøveautokorrelasjonen og delvise autokorrelasjonsfunksjoner Vel for de grunnleggende modellene er oppgaven ikke for vanskelig Hver har autokorrelasjonsfunksjoner som ser på en bestemt måte Men når du går opp i kompleksitet , mønstrene er ikke så lett oppdaget For å gjøre saken vanskeligere representerer dataene bare en prøve av den underliggende prosessen Dette betyr at prøvefeilutjevningsmidler, målefeil mm kan forvride den teoretiske identifikasjonsprosessen Det er derfor tradisjonell ARIMA-modellering er en kunst heller enn en vitenskap.

Comments

Popular Posts